Gold(I) and Palladium(II) Complexes Containing the Functionalized Ylides Triarylphosphonium Cyanomethylide or 2-Cyanoethylide (R₃P=CHR', R' = CN, CH₂CN)

by José Vicente,* María-Teresa Chicote, and María-Cristina Lagunas¹)

Grupo de Química Organometálica, Departamento de Química Inorgánica, Facultad de Química. Universidad de Murcia. Apartado 4021, E-30071-Murcia http://www.scc.um.es/gi/gqo; e-mail: jvs@fcu.um.es

The coordination properties of ylides R_3P =CHCN and R_3P =CHCH₂CN were studied. Ylide R_3P =CHCN reacts with [AuCl(tht)] (molar ratio 1:1, tht = tetrahydrothiophene) to give [AuCl{CH(PPh₃)CN]] (1). Dinuclear complexes [(AuL)₂[μ -C(PR₃)CN]]ClO₄ · nH₂O (n = 1, L = PPh₃, R = Ph (2a) or Tol (= 4-MeC₆H₄) (2b); n = 0, R = Tol, L = P(pmp)₃ (2c; pmp = 4-MeOC₆H₄ or AsPh₃ (2d)) are the products of reactions between phosphonium salts (R₃PCH₂CN)ClO₄ (R = Ph or Tol) and [Au(acac)L] (molar ratio 1:3, L = PPh₃ or P(pmp)₃; acacH = acetylacetone). The reaction of [Au(acac)PPh₃] with (Ph₃PCH₂CH₂CN)ClO₄ (Au/P 2 - 5) gives the mononuclear complex [Au{CH(PPh₃)CH₂CN}(PPh₃)]ClO₄ · 0.5 H₂O (3). Complexes 2b or 2c react with [Au(acetone)L]ClO₄ (molar ratio 1:1, L = PPh₃ or P(pmp)₃), prepared *in situ* from [AuCl(L)] and AgClO₄ in acetone, to give the corresponding trinuclear derivatives [(AuL)₂[μ_3 -{C(PTol₃)CN](AuL)]](ClO₄)₂ (L = PPh₃ (4a) or P(pmp)₃)(4b)]. We attempted unsuccessfully to prepare single crystals of 4a or 4b or of the triflate salt [[Au(PPh₃)]₂[μ_3 -{C(PTol₃)CN](AuPPh₃)]](TfO)₂ · H₂O (4a'), obtained by reacting 4a with 2 equiv. of KCF₃SO₃. In complexes 2 and 4, two new types of coordination of the ylides R₃P=CHCN are present. Attempts to coordinate three AuL groups to the N-atom of (R₃PCCN)⁻ induced by aurophilicity (see A and B) were unsuccessful. The reaction between PdCl₂ and R₃P=CHCN (molar ratio 1:2) gives *trans*-[PdCl₂[CH(PTol₃)CN]₂] (5).

Introduction. – We have previously reported the synthesis of gold [1-9], silver [6-12], and palladium [13-15] complexes containing phosphorus ylides as ligands. Most of these ylides were carbonyl-stabilized $R_3P=CHC(O)R'$ (R=Ph or Tol (= 4-MeC₆H₄), R'=Me, Ph, MeO, EtO, or Me₂N) and, in spite of their weak nucleophilic character, gave stable and interesting complexes. In this paper, we describe gold(I) and palladium(II) complexes of the cyano-stabilized ylide $R_3P=CHCN$ (triarylphosphonium cyanomethylide). Very few complexes of this ligand are known [8][16–20]: We have reported the only gold complex, [{Au(PPh_3)₂(μ -C(PTol₃)CN] (L = PPh₃) [8]. We were interested in using this ligand because of the tendency of Au^I complexes to aggregate through weak Au ··· Au bonds. Such aurophilic interactions are responsible for the synthesis of very interesting compounds containing hypercoordinated C-, N-, or P-atoms [21–25]. With these precedents in mind, we reasoned that, after deprotonation, $R_3P=CHCN$ could give tri- or tetranuclear gold(I) complexes A or B.

The ligand R_3P =CHCN is a stabilized phosphorus ylide due to the fact that, in addition to the ylene and ylide resonance forms **a** and **b**, respectively, common to all phosphorus ylides, the resonance form **c** contributes a certain electronic delocalization.

Present address: Departamento de Química Inorgánica I, Facultad de Química, Universidad Complutense, Ciudad Universitaria, E-28040 Madrid.

The ability of the N-atom to withdraw electron density from the methine C-atom is shown by the existence of complex C in which the methine proton of R_3P =CHCN has been substituted by BH₃ and the N-atom bridges two Li(thf)₂ units [20]. This makes R_3P =CHCN an interesting ambidentate ligand. *Navarro* and coworkers have synthesized complexes in which this ligand is *N*- or *C*-coordinated or bridging *N*- and *C*-coordinated [16][17].

In this paper, we also describe the synthesis of the complex $[PdCl_{2}{CH(PR_{3})CN}_{2}]$ (R = Tol). An analogue to this complex (R = Ph) and a family of Pd and Pt complexes with carbonyl-stabilized ligands were previously reported [18], but later shown to be mixtures of phosphonium salts and *ortho*-metallated complexes (*Scheme 1*) [13][26][27].

Results. – The reaction between the ylide $Ph_3P=CHCN$ and [AuCl(tht)] (molar ratio 1:1, 1 h, room temperature, CH_2Cl_2 ; tht = tetrahydrothiophene) gave $[AuCl\{CH(PPh_3)CN\}]$ (1) (*Scheme 2*). Acid-base reactions of phosphonium salts $(R_3PCH_2CN)ClO_4$ (R=Ph, Tol) with [Au(acac)L] (molar ratio 1:3, L=PPh₃ or P(pmp)₃ (pmp=4-MeOC₆H₄); acacH=acetylacetone) gave dinuclear complexes $[(AuL)_2\{\mu$ -C(PR₃)CN}]ClO_4 · nH_2O (n=1, L=PPh_3, R=Ph (2a) or Tol (2b) [8]; n=0, R=Tol, L=P(pmp)_3 (2c) or AsPh_3 (2d)) (*Scheme 2*) which are unprecedented metal derivatives of cyano-stabilized ylides. The substitution of more than one methylene H-atom of $(Ph_3PCH_2CH_2CN)ClO_4$ by a metallic moiety was not achieved. Thus, reactions of $[Au(acac)(PPh_3)]$ with different amounts of $(Ph_3PCH_2CH_2CN)ClO_4$ (Au/P 2–5) always gave the mononuclear complex $[Au\{CH(PPh_3)CH_2CN\}(PPh_3)]$ -ClO₄ · 0.5 H₂O (3).

Several attempts to prepare *N*-coordinated derivatives of complexes **2** and **3** were carried out with different results. Thus, while neither one reacted with $AgClO_4$ in a 1:1 (**2b**, **3**) or 2:1 (**2b**) molar ratio, **2b** or **2c** reacted with [Au(acetone)L]ClO₄ (molar ratio 1:1, L = PPh₃ or P(pmp)₃), prepared *in situ* from [AuClL] and AgClO₄ in acetone, to

R = CN, C(O)R' (R' = Me, Ph, MeO, EtO)

give the corresponding trinuclear derivatives $[(AuL)_2[\mu_3-\{C(PTol_3)CN\}(AuL)]]$ -(ClO₄)₂ (L = PPh₃ (**4a**) or P(pmp)₃ (**4b**)). Complex **3** led to decomposition products under the same reaction conditions. We attempted unsuccessfully to grow single crystals of **4a** or **4b** or of the triflate salt $[\{Au(PPh_3)\}_2[\mu_3-\{C(PTol_3)CN\}\{Au(PPh_3)\}\}]$ -(TfO)₂·H₂O (**4a**'), obtained by reacting **4a** with 2 equiv. of K(CF₃SO₃). Complexes **4** are also unprecedented metal derivatives of cyano-stabilized ylides.

Attempts to coordinate three AuL groups to the N-atom of $(R_3P=CCN)^-$ induced by aurophilicity (see **A** and **B**) were unsuccessful. Thus, a 1:1 mixture of **2c** and triphos $(MeC(CH_2PPh_2)_3)$ led to the recovery of the starting materials, while the reaction of **2d** with triphos and [AuCl(tht)] (molar ratio 1:1:1) gave an unresolvable mixture. The same occurred when [(AuCl)₃(triphos)] was reacted with [Tl(acac)] and (Tol₃-PCH₂CN)ClO₄ (molar ratio 1:2:1), or when **2d** was reacted with [Au(acetone)-(AsPh₃)]ClO₄ and triphos (molar ratio 1:1:1).

The reaction between $PdCl_2$ and $R_3P=CHCN$ (molar ratio 1:2, 2 h refluxing in acetone) gave *trans*-[PdCl₂{CH(PTol₃)CN}₂] (**5**) (*Scheme 1*).

Discussion. – In spite of its low nucleophilicity, $Ph_3P=CHCN$ is able to substitute the weak donor ligand tetrahydrothiophene (tht) in [AuCl(tht)], to give **1** (*Scheme 2*). In this context, this ylide is comparable to carbonyl-stabilized $R_3P=CHC(O)R'$ (R= Ph or Tol; R'=Me, Ph, MeO or EtO) [1][3]. The parallelism can be extended to phosphonium salts [$R_3PCH_2C(O)R'$]⁺ and (R_3PCH_2CN)⁺, as both are acidic enough to displace the weak acid acetylacetone from [Au(acac)L] to give dinuclear complexes, *e.g.*,

2a – **d**. However, there is an important difference. While $[R_3PCH_2C(O)R']^+$ salts react with [Au(acac)L] in 1:1 molar ratios to give mononuclear complexes $[Au\{CH(PR_3)-C(O)R'\}L]$, the result of reacting $[Au(acac)(PPh_3)]$ and $(Ph_3PCH_2CN)CIO_4$ in an 1:1 molar ratio is an irresolvable mixture containing (deduced by NMR spectroscopy) the dinuclear complex **2a**, the phosphonium salt, and the expected mononuclear derivative $[Au\{CH(PPh_3)CN\}(PPh_3)]CIO_4$. A similar reactivity towards $[Au(acac)(PPh_3)]$ has been reported for the non-stabilized phosphonium salt $[Ph_3PCH_2(py-2)]CIO_4$ (py-2=2-pyridyl) [9]. In this case, we have established that the monosubstituted complex $[Au\{CH(PPh_3)(py-2)\}(PPh_3)]$ is in equilibrium with the phosphonium salt and the dinuclear species $[\{Au(PPh_3)(py-2)\}(PPh_3)]$ since the same mixture of three products (phosphonium salt and mononuclear and dinuclear complex) was obtained when $[AuCl\{CH(PPh_3)(py-2)\}]$ was reacted

with $AgClO_4$ (molar ratio 1:1) and, after removal of AgCl, 1 equiv. of PPh₃ was added.

The phosphonium salt ($Ph_{2}PCH_{2}CH_{2}CN$)ClO₄ is less acidic than ($Ph_{2}PCH_{2}CN$)-ClO₄ because substitution of more than one methylene H-atom was not achieved. Thus, reaction of $(Ph_3PCH_2CH_2CN)ClO_4$ with an excess of $[Au(acac)(PPh_3)]$ (Au/P 2-5)gave the mononuclear complex $[Au{CH(PPh_3)CH_2CN}(PPh_3)]ClO_4 \cdot 0.5H_2O$ (3), while the reaction in a 1:1 molar ratio led to a mixture of **3** and the starting materials. Such decreasing acidity is a consequence of the reduction of the inductive effect of both Ph₃P and CN groups with increasing distance. We were also unable to synthesize silver derivatives of this phosphonium salt by reacting it with basic silver salts; the reaction of Ag₂CO₃ with (Ph₃PCH₂CH₂CN)Cl and AgClO₄ (molar ratio 1:1:1) at room temperature or refluxing in acetone gave (Ph₃PCH₂CH₂CN)ClO₄, AgCl, and unreacted Ag_2CO_3 . This method has been applied successfully in the preparation of vlide complexes of silver starting from more acidic phosphonium salts, like $[Ph_2P(CH_2CO_2R)_2]^+$ (R = Me, Et) [11]. The use of a stronger base such as NaH also did not result in the formation of the desired complexes. Thus, the reaction between (Ph₃PCH₂CH₂CN)Cl and NaH in the presence of AgClO₄ gave a complicated mixture of compounds from which only the decomposition product Ph₃PO was identified.

Because we were interested in using the ligands $(R_3PCCN)^-$ in the chemistry of gold(I) for the tendency of the latter to form weak Au··· Au bonds, thus inducing possibly aggregation of three or four AuPR₃ groups around the N-atom (see above, **A** or **B**), several attempts to prepare *N*-coordinated derivatives of complexes **2** and **3** were carried out. However, while **2b** or **2c** reacted with [Au(acetone)L]ClO₄ (L = PPh₃ or P(pmp)₃) to give the corresponding trinuclear derivatives [(AuL)₂[μ_3 -{C(PTol₃)-CN}(AuL)][ClO₄)₂ (L = PPh₃ (**4a**) or P(pmp)₃ (**4b**)] containing only one AuL group bonded to N, complex **3** led to decomposition products under the same reaction conditions.

The formation of $[PdCl_2(CH(PTol_3)CN]_2]$ (5) from PdCl₂ and Tol₃P=CHCN in refluxing acetone (Scheme 1) can be compared to the formation of similar complexes initially formulated as $[MCl_2[CH(PPh_3)R]_2]$ (M = Pd or Pt; R = C(O)R' (R' = Me, Ph, EtO or MeO)) which were proposed to result from reacting MCl_2 with the corresponding ylide in hot MeCN [18]. However, some of these complexes with carbonyl-stabilized vlides were later shown to be mixtures of the ortho-metallated complexes $[M{CH}(2-C_6H_4)Ph_2]{C(O)R}(\mu-Cl)]_2$ (M = Pd or Pt; R = Me, Ph, or MeO) and the corresponding phosphonium salt $[Ph_3PCH_2C(O)R]Cl$ (Scheme 1) [13] [26] [27]. We have already studied the reactivity of PdCl₂ towards the ylide $Ph_3P=CHCO_2Me$ [13]: the room-temperature reaction (1:2 molar ratio) in MeCN gave [PdCl₂{CH(PPh₃)CO₂Me₁] which evolved to the ortho-metallated compound $[Pd{CH}{P(2-C_6H_4)Ph_2}CO_2Me{(\mu-Cl)}]_2$ and the phosphonium salt when refluxed, whereas the reaction (1:1 molar ratio) in boiling MeCN gave only the ortho-metallated complex. Similarly, Tol_3P =CHCN and PdCl₂ (2:1 molar ratio) in refluxing acetone gave 5 after 2 h (Scheme 1) while a mixture of 5, the phosphonium salt and the orthometallated compound could be detected by NMR spectroscopy after 20 h. Although some other $[PdX_2\{CH(PR_3)R'\}_2]$ complexes with R' = C(O)R'' have been isolated [28][29], the reaction of PdCl₂ with ylides R_3P =CHCN had never been reinvestigated.

The product previously reported [18] and formulated as [PdCl₂{CH(PPh₃)CN}₂], *i.e.* **5** with Ph instead of Tol, was characterized by elemental analyses and IR spectroscopy; we believe that the isolated product was in fact a mixture of the phosphonium salt and the *ortho*-metallated complex (see below).

Structure of Complexes. – The NMR spectra of complexes **1** and **5** show that the coordination of R_3P =CHCN is through the methine C-atom. Thus, the coupling constant ¹*J*(P,C) of the C-atom in α -position to the CN group has similar values in complexes **1** (52.8 Hz) and **5** (50 Hz), in (Tol₃PCH₂CN)ClO₄ (57.4 Hz), and in other complexes containing this C-bonded ligand (46 Hz) [16], all displaying a sp³ hybridization at the C-atom. These ¹*J*(P,C) values are significantly smaller than those of the sp² CH C-atom in Tol₃P = CHCN (135.5 Hz) or in complexes containing this ligand coordinated through the N-atom (137–135 Hz) [16]. The ¹H-NMR spectra of complexes **1** and **5** show δ (H) and ²*J*(HP) values for CH(α) (**1**: 3.74 ppm, 12 Hz; **5**; 3.62, 3.70 ppm, 13 Hz) in the ranges observed for Pd complexes containing this C-bonded ylide ligand (4.58–3.05 ppm, 14–13 Hz) and far from the values in complexes containing the N-bonded ylide ligand (2.03–1.06 ppm, 6–5 Hz) [16][17]. The δ (C) and δ (P) values of the P–CH moiety are inconclusive. Some resonances in the ¹H- and ¹³C-NMR spectra, as well as that expected in the ³¹P-NMR spectrum of **5**, are duplicated, as anticipated for a molecule containing two chiral centers (*Scheme 1*).

The proposed structure for complexes $2\mathbf{a} - \mathbf{d}$, in which two AuL groups are bonded to the C(α) atom, is based on the lack of the CH resonance in their ¹H-NMR spectra, the observation of only two resonances in the ³¹P-NMR spectra of $2\mathbf{a} - \mathbf{c}$, and on the crystal structures of related complexes [1][2][6–8]. In addition, the preference of Au^I for C- with respect to N-donor ligands makes the proposed structure more plausible than the alternative one, in which both AuL groups are bonded to the N-atom. Moreover, the $\tilde{v}(CN)$ value (2167 ($2\mathbf{a}$), 2158 ($2\mathbf{b}$), 2164 ($2\mathbf{c}$), 2157 ($2\mathbf{d}$) cm⁻¹) is similar to that observed in the other complexes with the C-bonded ylide (2202 (1), 2183 (5) cm⁻¹). A marked decrease in the v(CN) frequency should be observed if coordination had taken place through the N-atom.

Complex **3** does not show any band in its IR spectrum between $2000-2300 \text{ cm}^{-1}$ assignable to a $\tilde{\nu}(\text{CN})$ vibration mode. The corresponding phosphonium salts show a very weak band at 2239 cm⁻¹. The ¹³C- and ¹³C-DEPT-NMR spectra of complex **3** allowed us to distinguish between the isomers [Au{CH(PPh_3)CH_2CN}(PPh_3)] and [Au{CH(CN)CH_2PPh_3}(PPh_3)]. Thus, the C-atom of the CH moiety is coupled with two different P-nuclei with coupling constants (¹J=83 and ²J=38 Hz) that are significantly greater than those of the CH₂ group (²J=4 and ³J=2.5 Hz), which is consistent with coordination of the Ph₃PAu group to the ylide C(α) atom.

When the IR spectra of trinuclear complexes **4a** and **4b** are compared with those of the parent dinuclear complexes **2b** and **2c**, no significant variation in the $\tilde{\nu}(CN)$ band is observed upon coordination of the third metal center. The ³¹P-NMR spectra of complexes **4a** and **4b** are in accord with the proposed structures. However, the broadening of the Ph₃PAuN resonance in **4a** and of the three resonances in **4b** show that exchange processes occur in solution at room temperature. A ¹H- and ³¹P NMR spectroscopic study of **4b** in the range of +60 to -55° shows that at least two different species are present in solution at low temperatures. However, it is difficult to elucidate

their structures. The IR spectrum of complex **1** shows one \tilde{v} (AuCl) band at 325 cm⁻¹ which lies in the normal range of 310–340 cm⁻¹ found in similar complexes where coordination to the C-atom is well established [1–3][6]. Complex **5** shows one \tilde{v} (PdCl) band at 321 cm⁻¹, consistent with a *trans* configuration [29]. This is also the geometry found in the complex [PdCl₂(CH(PBu₃)C(O)Ph]₂] [30].

The IR spectrum of complex **1** shows the $\tilde{\nu}(CN)$ band at 2202 cm⁻¹, 67 cm⁻¹ higher and 33 cm⁻¹ lower than that of the ylide Ph₃P=CHCN and the phosphonium salt (Ph₃PCH₂CN)ClO₄, respectively. The same sequence $\tilde{\nu}(CN)_{\text{ylide}} < \tilde{\nu}(CN)_{\text{complex}} < \tilde{\nu}(CN)_{\text{phosphonium salt}}$, is observed for complex **5** ($\tilde{\nu}(CN)$ 2183 cm⁻¹), the ylide Tol₃P= CHCN ($\tilde{\nu}(CN)$ 2142 cm⁻¹), and the phosphonium salt (Tol₃PCH₂CN)ClO₄ ($\tilde{\nu}(CN)$ 2257 cm⁻¹). The product of the reaction between PdCl₂ and Ph₃P=CHCN in refluxing MeCN, *i.e.* [PdCl₂{CH(PPh₃)CN}₂] (see **5**, with Ph instead of Tol) was reported to give two bands at 2248 and 2189 cm⁻¹ instead of only one. The presence of the one at higher frequency suggests it was a mixture containing the phosphonium salt and an *ortho*palladated complex (*Scheme 1*) [18].

The contribution of resonance form **c** (see above) to the electronic distribution in the R₃P=CHCN ylides, but not in their complexes or in the phosphonium salts, justifies the lowest values for $\tilde{v}(CN)_{ylide}$. If complexes are considered as metallated phosphonium salts, the lower electronegativity of the groups AuCl or PdCl₂(ylide) compared to the H-atom accounts for the highest values for $\tilde{v}(CN)_{phosphonium salt}$. In accord with this argument, substitution of both H-atoms in phosphonium salts by AuL groups lead to $\tilde{v}(CN)$ values (2167–2157 cm⁻¹ in complexes **2a**–**d**) lower than that observed in the mononuclear complex **1**. The same relationships have been found for the $\tilde{v}(CO)$ band in carbonyl-stabilized phosphorus ylide complexes with respect to the corresponding ylides and phosphonium salts [3]. Coordination of a third group to the N-atom, as in complexes **4** (2164 cm⁻¹), do not change $\tilde{v}(CN)$ values with respect to those of complexes **2a**–**d**. It is well known that N_o-coordination of nitriles can cause the $\tilde{v}(CN)$ to shift to either higher, lower, or similar frequency with respect to that of the free nitrile [31].

Experimental Part

General. Complex [{Au(PPh₃)}₂{ μ -C(PTol₃)CN}]ClO₄ · H₂O (**2b**) has been described previously [8]. The C, H, and N analyses, conductance measurements, IR spectra (in cm⁻¹) and melting-point determinations were carried out as described elsewhere [32]. NMR Spectra: *Varian-Unity-300* spectrometer; in CDCl₃ at r.t., unless stated otherwise; δ in ppm rel. to SiMe₄ (¹H, ¹³C) or H₃PO₄ (³¹P[¹H]) J in Hz.

Chloro[cyano(triphenylphosphonio)methyl]gold [AuCl{CH(PPh₃)CN]]; (1). [AuCl(tht)] (148.2 mg, 0.462 mmol) was added to a soln. of triphenylphosphonium cyanomethylide (=(triphenylphosphoranylidene)acetonitrile; Ph₃P=CHCN; 139.3 mg, 0.462 mmol) in CH₂Cl₂ (20 ml). After 1 h, the soln. was concentrated to *ca*. 2–3 ml and filtered through anh. MgSO₄. The filtrate was added to Et₂O (30 ml), the suspension concentrated to *ca*. half of its volume, and *n*-hexane (10 ml) added to give 1 as a white solid, which was filtered and air dried. Yield 78%. M.p. 185° (dec.). $A_{\rm M} (\Omega^{-1} \cdot {\rm mol}^{-1} \cdot {\rm cm}^2) = 0$. IR: 2202 (CN), 325 (AuCl). ¹H-NMR: 3.74 (*d*, ²*J*(P,H) = 12, CH); 7.6–7.9 (*m*, 3 Ph). ¹³C[¹H]-NMR: 2.4 (*d*, ¹*J*(P,C) = 52.8, CH); 118.5 (*d*, ²*J*(P,C) = 6.5, CN); 121.5 (*d*, ¹*J*(P,C) = 89, C_{*ipso*}); 130.1 (*d*, ³*J*(P,C) = 12.6, C_{*m*}); 133.5 (*d*, ²*J*(P,C) = 9.5, C_o), 134.7 (*d*, ⁴*J*(P,C) = 3.4, C_{*p*}). ³¹P[¹H]-NMR: 2.570 (*s*). Anal. calc. for C₂₀H₁₆AuCINP: C 45.01, H 3.02, N 2.62, Au 36.90; found: C 44.62, H 3.31, N 2.70, Au 37.20.

 $[\mu-[Cyano(triphenylphosphonio)methylene]] bis(triphenylphosphine) digold(1+) Perchlorate Hydrate (1:1:1) ([{Au(PPh_3)}]_{2}[\mu-C(PPh_3)CN]]ClO_4 \cdot H_2O;$ **2a** $) and {\mu-[Cyano[tris(4-methylphenyl)phosphonio]methylene]] bis[tris(4-methoxyphenyl)phosphine] digold(1+) Perchlorate ([{Au(pmp)}]_{2}][\mu-C(PTol_3)CN]]ClO_4;$ **2c** $). [Au(acac)L] (L = PPh_3, 217.2 mg, 0.389 mmol; L = P(pmp)_3, 469.2 mg, 0.723 mmol) was added to a soln. of$

(cyanomethyl)triphenyl- or (cyanomethyl)tris(4-methylphenyl)phosphonium perchlorate ((R_3PCH_2CN)ClO₄; R = Ph, 52.2 mg, 0.129 mmol; R = Tol, 109.2 mg, 0.246 mmol) in acetone (20 ml). The resulting suspension was stirred (R = Ph, 19 h; R = Tol, 72 h), and filtered through anh. MgSO₄. The filtrate was concentrated to *ca*. 2 ml and Et₂O (20 ml) added to precipitate **2a** or **2c** as a white solid, which was filtered, washed with Et₂O, and air-dried.

Data of **2a**: Yield 93%. M.p. 169° (dec.). $\Lambda_{\rm M}$ ($\Omega^{-1} \cdot {\rm mol}^{-1} \cdot {\rm cm}^2$) = 124. IR: 2167 (CN). ¹H-NMR: 1.68 (*s*, 2 H, H₂O); 7.1–7.9 (*m*, 9 Ph). ³¹P[¹H-NMR]: 33.51 (*s*, Ph₃PC); 36.93 (*s*, Ph₃PAu). Anal. calc. for C₅₆H₄₇Au₂ClNO₅P₃: C 50.33, H 3.54, N 1.05, Au 29.48. Found: C 50.10, H 3.84, N 1.14, Au 29.42.

Data of **2c**: Yield 95%. M.p. 242° (dec.). $\Lambda_{M} (\Omega^{-1} \cdot mol^{-1} \cdot cm^{2}) = 132$. IR: 2164 (CN). ¹H-NMR: 2.44 (*s*, 3 Me); 3.83 (*s*, 6 MeO); 6.79 (*dd*, ³*J*(H,H) = 8, ⁴*J*(P,H) = 1, 12 H, MeOC₆*H*₄); 7.11 (*dd*, ³*J*(P,H) = 12, 12 H, MeOC₆*H*₄); 7.24 (*dd*, ³*J*(H,H) = 8, ⁴*J*(P,H) = 2, 6 H, MeC₆*H*₄); 7.74 (*dd*, ³*J*(P,H) = 12, 6 H, MeC₆*H*₄). ³¹P{¹H}-NMR: 32.40 (*t*, ³*J*(P,P) = 6, Tol₃PC); 32.92 (*d*, (pmp)₃PAu). Anal. calc. for C₆₅H₆₃Au₂ClNO₁₀P₃: C 50.68, H 4.12, N 0.91; found: C 50.60, H 4.42, N 0.97.

 $[\mu$ - $[Cyano[tris(4-methylphenyl)phosphonio]methylene]/bis(triphenylarsine)digold(1 +) Perchlorate ([{Au-(AsPh_3)}_2[\mu-C(PTol_3)CN]]ClO_4; 2d). [Au(acac)(AsPh_3)] (429.6 mg, 0.713 mmol) was added to a soln. of (cyanomethyl)tri(4-tolyl)phosphonium perchlorate ((Tol_3PCH_2CN)ClO_4; 79.1 mg, 0.178 mmol) in acetone (30 ml). The resulting suspension was stirred under N₂ for 3 h and filtered through$ *Celite*. The filtrate was concentrated to*ca* $. 2 ml and Et₂O added (20 ml) to precipitate 2d as an off-white solid, which was recrystallized from CH₂Cl₂/Et₂O. Yield 62%. M.p. 134° (dec). <math>\Lambda_M (\Omega^{-1} \cdot mol^{-1} \cdot cm^2) = 127$. IR: 2157 (CN). ¹H-NMR: 2.43 (*s*, 3 Me); 7.2–7.8 (*m*, 42 H, Tol, Ph). ³¹P[¹H]-NMR: 31.3 (*s*, Tol₃PC). Anal. calc. for C₅₉H₅₁As₂Au₂ClNO₄P: C 48.93, H 3.55, N 0.97; found: C 48.86, H 3.42, N 1.07.

[2-Cyano-1-(triphenylphosphonio)ethyl](triphenylphosphine)gold(1 +) Perchlorate Hydrate (2:2:1) ([Au-{CH(PPh_3)CH_2CN}(PPh_3)]ClO₄ · 0.5 H₂O; **3**) [Au(acac)(PPh_3)] (211.4 mg, 0.378 mmol) was added to a soln. of (2-cyanoethyl)triphenylphosphonium perchlorate ((Ph_3PCH_2CH_2CN)ClO₄; 78.7 mg, 0.189 mmol) in acetone (20 ml). The resulting suspension was stirred under N₂ for 29 h and then filtered through anh. MgSO₄. The filtrate was concentrated to 1 ml and Et₂O (20 ml) added to precipitate **3** as an off-white solid, which was recrystallized from CH₂Cl₂/Et₂O. Yield 91%. M.p. 106°. $A_{\rm M}$ ($\Omega^{-1} \cdot {\rm mol}^{-1} \cdot {\rm cm}^2$) = 124. ¹H-NMR: 1.63 (*s*, 1 H, H₂O); 3.09 (*m*, CH); 3.47 (*m*, CH₂); 7.2–7.9 (*m*, 6 Ph). ¹³C-NMR: 17.63 (*d*, ²J(P,C) = 4, ³J(P,C) = 2.5, CH₂); 27.17 (*d*d, ¹J(P,C) = 83, ²J(P,C) = 38, CH); 120.1 (*d*d, ³J(P,C) = 13, ⁴J(P,C) = 2, CN); 122.3 (*d*d, ¹J(P,C) = 85, ⁴J(P,H) = 1.5, C_{ipso}); 128.5 (*d*, ¹J(P,C) = 56, C_{ipso}); 129.4 (*d*, ³J(P,C) = 14.1, C_o); 134.2 (*d*, ⁴J(P,C) = 2.5, C_P). ³¹P[¹H]-NMR: 30.46 (*d*, J(P,P) = 8, Ph₃PC); 40.33 (*d*, Ph₃PAu). Anal. calc. for C₃₉H₃₄AuCINO₄₅P₂: C 53.05, H 3.88, N 1.58, Au 22.30; found: C 52.88, H 3.75, N 1.55, Au 22.25.

 $\{\mu_3-\{(Cyano-KN)[tris(4-methylphenyl)phosphonio]methylene-KC:KC]\}$ tris(triphenylphosphine)trigold-(2+) Diperchlorate ([{Au(PPh_3)}_2[\mu_3-{C(PTol_3)CN}{Au(PPh_3)}](ClO_4)_2; **4a**) and $\{\mu_3-\{(Cyano-KN)[tris(4-methylphenyl)phosphonio]methylene-KC:XC]\}$ (tris(4-methoxyphenyl)phosphine]trigold(2+) Diperchlorate ([{Au(pmp)}_3]_2[\mu_3-{C(PTol_3)CN}{Au(pmp)}](ClO_4)_2; **4b**). To a soln. of [AuCLL] (L=PPh_3, 107.8 mg, 0.218 mmol; L = P(pmp)_3, 45.5 mg, 0.078 mmol) in acetone (10 ml), under N₂, 1 equiv. of AgClO₄ was added. The suspension was stirred for 5 min and allowed to settle. The mother liquor was then decanted, and a soln. of **2b** [8] (296.6 mg, 0.218 mmol) or **2c** (120 mg, 0.078 mmol) in acetone (10 ml) was added to the residue. The resulting suspension was stirred for 10 min and filtered through *Celite* and the filtrate concentrated to *ca*. 5 ml. Addition of Et₂O (30 ml) gave complex **4a** or **4b**, respectively, as a white solid which was filtered, washed with Et₂O, and air dried.

Data of **4b**: Yield 81%. M.p. 150° . $\Lambda_{\rm M}$ (Ω⁻¹·mol⁻¹·cm²) = 260. IR: 2164 (CN). ¹H-NMR: 2.42 (*s*, 3 MeC_6H_4); 7.1–7.7 (*m*, 57 arom. H). ³¹P{¹H}-NMR: 28.53 (br. *s*, Ph₃PAuN); 31.82 (*t*, *J*(P,P) = 6.8, Tol₃PC); 36.28 (*d*, Ph₃PAuC). Anal. calc. for C₇₇H₆₆Au₃Cl₂NO₈P₄: C 48.19, H 3.47, N 0.73, Au 30.79; found: C 48.23, H 3.70, N 0.74, Au 30.16.

Data of **4b**: Yield 80%. Mp: 145°. $\Lambda_{\rm M}$ (Ω⁻¹·mol⁻¹·cm²) = 270. IR: 2164(CN). ¹H-NMR: 2.45 (*s*, 3 $Me(C_6H_4)$; 3.84 (*s*, 6 MeO); 3.85 (*s*, 3 MeO); 6.8–7.7 (*m*, 48 arom. H). ³¹P{¹H}-NMR: 24.10 (br. *s*, (pmp)₃PAuN); 31.73 (br. *s*, Tol₃PC); 32.55 (*s*, (pmp)₃PAuC). Anal. calc. for C₈₆H₈₄Au₃Cl₂NO₁₇P₄: C 47.18, H 3.87, N 0.64; found: C 47.36, H 3.92, N 0.76.

 $\{\mu_3-\{(Cyano-KN)\}$ [tris(4-methylphenyl)phosphonio]methylene-XC:KC}]tris(triphenylphosphine)trigold-(2+) Bis(trifluoromethanesulfonate) Hydrate (1:1:1) [(AuPPh_3)_2{\mu-{C(PTol_3)CN}(AuPPh_3)}](TfO)_2 \cdot H_2O; **4a**'): KTfO (23.9 mg, 0.127 mmol) was added to a soln. of **4a** (122.2 mg, 0.064 mmol) in acetone (15 ml). The soln. was stirred for 1 h and then evaporated. The residue was extracted with CH₂Cl₂ (20 ml) and the extract filtered through *Celite*. The filtrate was concentrated to *ca*. 2 ml and Et₂O added to give **4a**' as a white solid. Yield 72%. M.p. 125°. Λ_M ($\Omega^{-1} \cdot mol^{-1} \cdot cm^2$) = 247. IR: 2164 (CN). ¹H-NMR: 1.64 (*s*, H₂O); 2.43 (*s*, 3 MeC₆H₄); 7.1–7.7 (*m*, 57 arom. H). ${}^{31}P[{}^{1}H]$ -NMR: 28.27 (br. *s*, Ph₃PAuN); 32.20 (br. *s*, Tol₃PC); 36.43 (*d*, *J*(P,P) = 5.3, Ph₃PAuC). Anal. calc. for C₇₉H₆₈Au₃F₆NO₇P₄S₂: C 46.60, H 3.36, N 0.76, S 3.18, Au 29.02; found: C 46.78, H 3.52, N 0.69, S 3.51, Au 31.12.

trans-*Dichlorobis[cyano[tris(4-methylphenyl)phosphonio]methyl]palladium (trans*-[PdCl₂[CH(PTol₃)CN]₂]; **5**): PdCl₂ (26.6 mg; 0.150 mmol) was added to a soln. of Tol₃P=CHCN (103.3 mg, 0.301 mmol) in acetone (15 ml), and the mixture was refluxed for 2 h. The resulting orange suspension was then allowed to cool, stirred at r.t. for 22 h, and filtered. The orange solid was recrystallized from CH₂Cl₂/Et₂O to give **5**. Yield 81%. M.p. 241° (dec). $\Lambda_{\rm M} (\Omega^{-1} \cdot {\rm mol}^{-1} \cdot {\rm cm}^2) = 0$. IR: 2183 (CN), 321 (PdCl). ¹H-NMR (both diastereoisomers, in a *ca*. 1 : 1 ratio): 2.42 (*s*, 3 *MeC*₆H₄); 3.62, 3.70 (2*d*, ²*J*(P,H) = 13, 1 H, CH); 7.32 – 7.38 (*m*, 6 arom. H); 7.80 – 7.90 (*m*, 6 arom. H). ¹³C NMR (2 diastereoisomers): -4.3, -5.6 (2*d*, ¹*J*(P,C) = 50, CH); 21.7 (*s*, Me); 119.1, 119.4 (2*d*, ¹*J*(P,C) = 90, *C_{ipso}*); 122.0, 122.1 (2*d*, ²*J*(P,C) = 5.8, CN); 129.8, 129.9 (2*d*, ³*J*(P,C) = 13, *C_m*); 134.4, 134.5 (2*d*, ²*J*(P,C) = 10, *C_o*); 144.30, 144.35 (*d*, ⁴*J*(P,C) = 2.5, *C_p*). ³¹P[¹H]-NMR (2 diastereoisomers): 25.74(*s*); 26.76(*s*). Anal. calc. for C₄₆H₄₄Cl₂N₂PPd: C 63.94, H 5.13, N 3.24; found: C 64.12, H 5.15, N 3.19.

REFERENCES

- J. Vicente, M. T. Chicote, J. A. Cayuelas, J. Fernández-Baeza, P. G. Jones, G. M. Sheldrick, P. Espinet, J. Chem. Soc., Dalton Trans. 1985, 1163.
- [2] J. Vicente, M. T. Chicote, I. Saura-Llamas, P. G. Jones, K. Meyer-Bäse, C. F. Erdbrügger, Organometallics 1988, 7, 997.
- [3] J. Vicente, M. T. Chicote, I. Saura-Llamas, J. Turpín, J. Fernández-Baeza, J. Organomet. Chem. 1987, 333, 129.
- [4] J. Vicente, M. T. Chicote, I. Saura-Llamas, J. Chem. Soc., Dalton Trans. 1990, 1941.
- [5] J. Vicente, M. T. Chicote, I. Saura-Llamas, M. C. Lagunas, J. Chem. Soc., Chem. Commun. 1992, 915.
- [6] J. Vicente, M. T. Chicote, M. C. Lagunas, P. G. Jones, J. Chem. Soc., Dalton Trans. 1991, 2579.
- [7] J. Vicente, M. T. Chicote, M. C. Lagunas, P. G. Jones, J. Chem. Soc., Chem. Commun. 1991, 1730.
- [8] J. Vicente, M. T. Chicote, M. C. Lagunas, P. G. Jones, B. Ahrens, Inorg. Chem. 1997, 36, 4938.
- [9] J. Vicente, M. T. Chicote, M. C. Lagunas, Inorg. Chem. 1993, 32, 3748.
- [10] J. Vicente, M. T. Chicote, J. Fernández-Baeza, J. Martín, I. Saura-Llamas, J. Turpín, J. Organomet. Chem. 1987, 331, 409.
- [11] J. Vicente, M. T. Chicote, I. Saura-Llamas, P. G. Jones, Organometallics 1989, 8, 767.
- [12] J. Vicente, M. T. Chicote, I. Saura-Llamas, J. Chem. Educ. 1993, 70, 163.
- [13] J. Vicente, M. T. Chicote, J. Fernández-Baeza, J. Organomet. Chem. 1989, 364, 407.
- [14] J. Vicente, M. T. Chicote, I. Saura-Llamas, M. J. López-Muñoz, P. G. Jones, J. Chem. Soc., Dalton Trans. 1990, 3683.
- [15] J. Vicente, M. T. Chicote, M. C. Lagunas, P. G. Jones, E. Bembenek, Organometallics 1994, 13, 1243.
- [16] L. R. Falvello, S. Fernández, R. Navarro, E. P. Urriolabeitia, Inorg. Chem. 1997, 36, 1136.
- [17] S. Fernández, M. M. García, R. Navarro, E. P. Urriolabeitia, J. Organomet. Chem. 1998, 561, 67.
- [18] E. T. Weleski, J. L. Silver, M. D. Jansson, J. L. Burmeister, J. Organomet. Chem. 1975, 102, 365.
- [19] H. Nishiyama, K. Itoh, Y. Ishii, J. Organomet. Chem. 1975, 87, 129.
- [20] H. J. Bestmann, T. Röder, M. Bremer, D. Löw, Chem. Ber. 1991, 124, 199.
- [21] H. Schmidbaur, Chem. Soc. Rev. 1995, 391.
- [22] F. P. Gabbaï, A. Schier, J. Riede, H. Schmidbaur, Chem. Ber. 1997, 130, 111.
- [23] J. M. Lopez de Luzuriaga, A. Schier, H. Schmidbaur, Chem. Ber. 1997, 130, 221.
- [24] R. E. Bachman, H. Schmidbaur, Inorg. Chem. 1996, 35, 1399.
- [25] J. Vicente, M. T. Chicote, R. Guerrero, P. G. Jones, J. Am. Chem. Soc. 1996, 118, 699.
- [26] M. L. Illingsworth, J. A. Teagle, J. L. Burmeister, W. C. Fultz, A. L. Rheingold, Organometallics 1983, 2, 1364.
- [27] J. A. Teagle, J. L. Burmeister, Inorg. Chim. Acta 1986, 118, 65.
- [28] R. Sanehi, R. N. Bansal, R. C. Mehrotra, Indian J. Chem. Soc., Sect. A 1985, 24, 1031.
- [29] P. Bravo, G. Fronza, C. Ticozzi, J. Organomet. Chem. 1976, 111, 361.
- [30] J. A. Albanese, A. L. Rheingold, J. L. Burmeister, Inorg. Chim. Acta 1988, 150, 213.
- [31] B. N. Storhoff, H. C. Lewis, Coord. Chem. Rev. 1977, 23, 1.
- [32] J. Vicente, J. A. Abad, M. T. Chicote, M.-D. Abrisqueta, J.-A. Lorca, M. C. Ramírez de Arellano, Organometallics 1998, 17, 1564.